
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{skouradaki, andrikopoulos, leymann}@iaas.uni-stuttgart.de

Representative BPMN 2.0 Process Models Generation
from Recurring Structures

Marigianna Skouradaki, Vasilis Andrikopoulos, Frank Leymann

© 2016 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings {SAL2016,
author = {Marigianna Skouradaki and Vasilis Andrikopoulos and Frank Leymann},
title = {{Representative BPMN 2.0 Process Models Generation from Recurring Structures}},
booktitle = {Proceedings of the 23rd IEEE International Conference on Web Services},
publisher = {IEEE},
pages = {468--475},
month = {June},
year = {2016},
keywords = {BPMN 2.0; Business Process Management; collection; composition;

generation; process model; representative}
}

:

Institute of Architecture of Application Systems

Representative BPMN 2.0 Process Model
Generation from Recurring Structures

Marigianna Skouradaki, Vasilios Andrikopoulos, and Frank Leymann
Institute of Architecture of Application Systems (IAAS)

University of Stuttgart, Germany
{skouradaki,andrikopoulos,leymann}@iaas.uni-stuttgart.de

Abstract—The use of process fragments to leverage reuse of
process models is well established in the literature. Process
fragments are manually or semi-automatically extracted and
mainly focus on the textual or behavioural semantics of the
process models that they are extracted from. However, in many
use cases we also need to use these fragments to derive synthetic
process models that satisfy specific structural properties. In
order to tackle this challenge we propose a method for auto-
matically generating synthetic, representative, executable process
models expressed in Business Process Model and Notation 2.0
(BPMN 2.0) with respect to specific user-defined structural
criteria. Our method identifies, selects, and combines recurring
sub-structures discovered in a collection of thousands of real
world process models. The recurring sub-structures are seen as
an extended type of process fragments. For our method we have
developed a proof-of-concept prototype and for this we discuss
the experimental results obtained from its evaluation.

Index Terms—BPMN 2.0, Business Process Management, col-
lection, composition, generation, process model, representative

I. INTRODUCTION

The (semi-)automated generation of synthetic process models
is necessary in the absence of available large collections of
processes from the industry or academia [18]. In previous
work [14], for example, we have discussed automated workload
generation as one of the major challenges towards developing
a benchmark for Workflow Management Systems. Generation
in this context refers to the process of discovering, extracting,
selecting, and synthesizing process fragments into models that
resemble as much as possible realistic models from practice.
Having already discussed the discovery and extraction of
fragments in [12], in this work we shift the focus to the
selection and synthesis aspects of process model generation
for the Business Process Models and Notation 2.0 (BPMN 2.0)
language. Our proposed approach is agnostic with respect to
its application. This means that we use the benchmarking
development problem essentially as a use case for our proposal
that, due to its generality, can also be applied for other purposes,
e.g. for evaluation of refactoring techniques requiring large
repositories of process models [4], [18].

An important issue with respect to process model generation
is the representativeness of the generated models. In principle,
the generated models should have the same set of characteristics
as an ideal model collection. The characteristics in question
are specific to the purpose and use of the collection, and by
extension, that of the generated process model set as well.
In order to provide a generic solution, for the purposes of

this work we use a minimal set of characteristics that are
reusable across use cases: model size, and structural criteria
like specific events, e.g. start or end events in the model,
number of control/activity nodes, fan-in and -out, etc [3]. We
then can informally define what constitutes a representative
generated process model, or simply representative model for
short, as any model that respects a set of predefined statistical
characteristics w.r.t. to its size and structure. Based on this
definition, in the following we present an approach for the
automatic generation of representative models.

The contributions of this work can be summarised as follows;
we present:

1) a method for automatically generating executable represen-
tative generated process models for given sets of structural
criteria,

2) a proof-of-concept prototypical implementation of the
proposed method, and

3) a qualitative and quantitative evaluation of the proposed
approach.

The rest of this paper is structured as follows. Section II
discusses the background of the use case adopted as an
application of our proposal throughout the paper. Section III
provides a high level overview of our proposal in a group
of phases to be followed. These phases are discussed more
extensively in Section IV. Section V presents the proof-of-
concept prototype, based on which we run our evaluation in
Section VI. The paper closes with related work (Section VII),
and conclusions and future work (Section VIII).

II. BACKGROUND

The BenchFlow project1 aims to create the first standard
benchmark for BPMN 2.0 compliant Workflow Management
Systems. The construction of a robust benchmark lies heavily
on the definition of a representative workload model [7]. In
other words, the artifacts issued to the system under test
during the performance tests should stand for different sets of
characteristics. Only then can they reflect the interests of the
users that exploit the benchmark results [16]. The workload of
our benchmark comprises many artifacts, presented in detail
in Ferme et al. [8].

One of the primary artifacts of the benchmark are the
process models to be executed by the system under test.

1http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php

0 20 40 60 80 100 120

100

200

300

400

500

size

fr
eq

ue
nc

y

Fig. 1. Frequency of Size in the BPMN 2.0 Models Collection

Towards defining the process models of our workload, we
have collected 1, 561 real-world process models that express
various application scenarios [14]. Including all these process
models to our performance tests would not be feasible or even
meaningful. Hence, we need to extract the essence of the
collected process models and come up with synthetic process
models that reflect the original collection.

Defining the synthetic process models for the workload
requires therefore an analysis of the existing process model
collection. The purpose of the analysis of our collection is
twofold: a) to define a set of business process models properties
that will characterize the default workload of the benchmark
and b) to enable the synthesis of business process models
with respect to specific structural properties defined by the
application user. The latter goal is presented in this work. In
order to detect the specific properties of the collection, existing
business process similarity analysis techniques can be used.
Such techniques rely on a) the semantics of the business process
model’s elements, b) the graph structure of the business process
model along with some of its semantics and c) the behavior
of the business process model [5].

In the case of BenchFlow, the available collection contains
a large amount of anonymized and non-executable (reference)
business process models. Therefore, for the analysis of our
collection we needed to restraint ourselves on the structural
semantics of our models. Fig. 1 shows the size of elements
of the existing process models expressed in number of
“FlowNodes” [9], hereafter nodes per process model and the
frequency of appearance for each size. As shown in Fig. 1 most
of the models have size < 20 while after 20 nodes we observe
a much sparser distribution. Furthermore, a good portion of
models (around 36.77% of the collection) have exactly 5
nodes (size = 5). In addition, the minimum size found in our
collection is min(size) = 3 while max(size) = 120. Respec-
tively, we have median(size) = 8 and mean(size) = 13.91.
Considering the above statistics, for the purposes of this work

we have decided that the size of a representative process model
should be 5 ≤ size ≤ 32, which would cover 87.12% of
the collection. For the rest of this discussion we develop the
business process models synthesized with respect to these
statistics.

III. METHOD

Our proposed method of process synthesizing is divided into
four phases that are presented on Fig. 2. The overall goal of the
process synthesizing methodology is to construct a synthetic,
executable process model that follows specific structural criteria
defined by the application’s user.

To this direction the “Characterization” is a preliminary
phase that needs to be executed before any request for synthetic
process model construction. It takes as input a reference to a
database that contains a collection of the recurring structures
(Relevant Process Fragments (RPFs)) extracted by the execution
of a subgraph isomorphism algorithm like the one presented
in [12]. The RPFs are parsed in order to create relevant
structural metadata, which are persisted in a separate database.
The calculated structural metadata are then considered for
constructing the new synthetic process model. This phase can
be executed only once for a specific RPF collection, i.e. it is
not needed to recreate the metadata database each time the
user needs to construct a synthetic process model.

The “Selection” phase chooses the appropriate RPFs with
respect to user defined criteria which are given as an input. The
criteria contain information about the structural properties of
the RPFs to be selected, as well as the size of the new synthetic
process model. After selecting the appropriate fragments we
proceed to the “Compatibility” phase to apply a compatibility
check. This check will examine whether the selected fragments
can be linked together to a new business process. This procedure
is achieved through a set of rules, which we will discuss in
more detail in the following section.

When the compatibility check is finished, the synthesis of
the new process model by linking the selected RPFs with each
other starts. The synthesized process model is then validated at
a first stage against the BPMN 2.0 Standard [9]. This is done
with the utilization of external, well-known frameworks such
as Camunda BPMN model API 2. Although the new synthetic
business process model might be valid BPMN 2.0 it might not
necessarily be representative of real-world use cases. For this
reason the generated process model is also validated against
the statistical analysis applied to our process model collection,
as presented in the previous section. If the validation is not
successful the same process is repeated iteratively (starting
from the “Selection” phase in order to create a representative
model) until a representative model is generated.

As soon as a model is validated successfully, we can then
proceed to the serialization of the model as an executable
model. Since each Workflow Management System demands
a different serialization in order to execute a model [14] this
step needs as parameter the specific system which the model

2https://github.com/camunda/camunda-bpmn-model

M
o

d
e

l
Sy

n
th

es
is

U
se

r

Compatibility & Generation ExecutabilityCharacterization Selection

Parse RPF
MetaData

RPF

Select RPF

Metadata

Compatibility
Check

Yes

Define
Selection
Criteria

No

Synthesize
Process

Serialize for
Engine Specific

Valid?

Yes

Validate
(w.r.t. Static Analysis)

No

Fig. 2. Method Overview

is meant to be executed in. The executable synthesized process
model is then returned to the user.

The following section discusses the phases of our proposed
method, as well as the tools and techniques that can be used
in more detail.

IV. REPRESENTATIVE MODEL
GENERATION

A. Characterization
The process model generation method is based on the

concept of process fragment placeholders as introduced by
Schumm et al. [10]. Placeholders are abstract regions in a
process fragment which may be replaced by other fragments.
While in the original definition [10] the placeholders can be
anywhere in the fragment, in our case they can only exist in
the beginning and/or at the end of the RPF. More particularly,
the placeholders of an RPF are assigned to the positions of the
detected sequence flows that are missing a source or a target
node [9], hereafter referred to as open connections.

With respect to this concept, the goal of this phase is to parse
a given collection of RPFs and obtain the structural metadata
that characterize the extracted RPFs, as well as to determine the
placeholders of the RPFs. For the RPF characterization we have
considered the following structural metadata: hasStartEvent:
indicates if the RPF has a start event; hasEndEvent: indicates if
the RPF has an end event; elementsMetadata: a set of metadata
for each detected BPMN 2.0 element in the RPF.

The elementsMetadata element contains the following infor-
mation:
elementGeneralType: information on each task element de-

tected in an RPF (task, gateway, event etc.);
elementSpecificType: information on the specific type of

the element (script task, service task, exclusive gateway,
parallel gateway etc.);

incomingConnections: the number of open incoming connec-
tions that exist on the RPF;

outgoingConnections: the number of open outgoing connec-
tions that exist on the RPF.

The incoming- and outgoingConnection elements are used later
towards the identification of the RPFs with open connections
and the driving of the process model generation. As discussed in
the previous section, the characterization of the RPF collection
is executed once for every collection provided. The metadata
are then stored in a persistent database, out of which they can
be retracted for any future request.

B. Selection

The selection of the RPFs that participate in the generation of
the synthetic process model is done according to user-defined
criteria. The user-defined criteria define the structural properties
that a selected RPF should satisfy. For example the user may
either query an RPF by providing general properties (e.g. 2
tasks and 3 gateways) or by requesting exact types of elements
(e.g. 4 service tasks and 3 parallel gateways) for each RPF.
Each process model generation is also characterized by the
expected total number of nodes (size) of the new synthetic
process model. Overall, the goal of the “Selection” phase is to
select RPFs that: a) satisfy the given user-defined criteria, b)
can be successfully linked to a complete process model and c)
their synthesis will result to a process model with the exact
requested size. To this effect, the criteria are combined with
size parameters for the evaluation of the appropriate RPF.

Let C be a set of user-defined criteria and R a collection
of RPFs which are given as input to our methodology. Then
we define the function η : R→ N = S that calculates the size
of each RPF. The function η will map all the elements of the
set R to a natural number which corresponds to the process
model’s size. The result of the function η is the set S.

Let F be a family of sets over S where for each set N ∈ F
it holds: {x ∈ N |

∑
x∈N = size} and |N | = |C|. In other

words, the set F contains all sets of possible combinations of
sizes, for which their sum equals to the total requested size of

synth

SC9

SE6

SC10

SC11

SE7

SE8

AB1

AB2

CA1SC12

Gateway
Conditions

Web Service OR
Java Code

Dummy
Script

SC1

Dummy
Process

Fig. 3. Generated Synthetic Process Model Example

the new synthetic process model. The number of elements that
can be contained in each set of F equals to the total number of
user-defined criteria. Let for example size = 12, and |C| = 2.
Then according to the statistics of our collection (cf. Fig 1),
S = [5, 67]∪ [72, 75]∪ {78, 81, 83, 84, 99, 101, 103, 107, 108}.
The F is structured as follows: {{5, 7}, {6, 6}, {7, 5}}.

In order to achieve the size constraints, we need to select
RPFs with the appropriate size. The function ϕ : C ×N →
R = Wc combines a criterion with a size property, to return
this subset of the RPF collection that complies with the defined
criteria. Lets assume the function ϕ is applied to the first set F
of the previous example. Then ϕ(1, 5) would return all these
RPFs with size = 5 for the first criterion and ϕ(2, 7) the RPFs
with size = 7 for the second criterion. The resulting RPFs
collections are then given as input to the “Compatibility &
Generation” phase that follows.

C. Compatibility & Generation

At this phase we apply a structural compatibility check to
determine whether, and which of the selected RPFs can be
combined with each other.

Consider the set of L over the selected W sets as they were
created in the Selection phase. Then it holds |L| = |C|, and
the L contains one set of selected RPFs for each criterion. As
a preliminary step we remove all the intermediary RPFs that
contain start or end events, because a start or an end event
in the middle of the synthetic process model is not allowed.
Let κ and λ be the predicate functions that indicate if an RPF
element contains a start event or an end event respectively.
Then {∀x ∈ Wi, 1 ≤ i ≤ (|C| − 1)} it needs to hold that
κ(x) = false and λ(x) = false. The next step is to check
the open connections between the sets of the returned RPFs and
select these RPFs that can be linked to each other. In order to
enable the linking between the RPFs we need to verify that there
is an equivalent number of open connections between them.
Hence, ∀(Wi,Wi+1 ∈ L, 0 ≤ i ≤ |C| − 1) we need to find
sequences of pairs (x, y) where {∃x ∈Wi ∧ ∃ y ∈Wi+1, 0 ≤
i ≤ |C| − 1 | xoutgoingConnections = yincomingConnections}.
The above condition is checked for all possible combinations
of the resulting sets W until we discover a sequence of |C|
RPFs that satisfies it.

In the case we exhaust all possible combinations of RPFs
without finding a sequence of RPFs that can be linked the failure
of synthesis for these specific criteria is reported. Otherwise,

we proceed to the synthesis of the process model by linking
the open outgoing with the open incoming connections. At
this point, the linking bases solely on the outgoing and incom-
ing connections, without taking into account any particular
semantics. At the end, start events are added to the incoming
connections of the first RPF, and end events are added to the
outgoing connections of the last linked RPF.

Before returning the result of the “Compatibility & Genera-
tion” phase, the synthetic process model will be additionally
checked against its validity and representativeness. For this
purpose, the synthesized process model is checked against
the gathered statistics as discussed in Section II, in order to
certify that it has a statistical soundness of real-world usage.
If any of the aforementioned checks are not satisfied then
a corresponding warning or error message is produced and
we iteratively select another combination of RPF in order to
proceed to the synthesis of a process model.

D. Executability

The process model generated during the previous phase
comprises a reference, non-executable model. Each Workflow
Management System demands a different serialization of the
BPMN 2.0 file in order to execute it [14], and therefore we
need to apply the appropriate changes on the generated process
model’s serialization. Moreover, we need to connect the model
elements to the corresponding missing artifacts and external
interactions, as they are shown for example in Fig. 3.

The gateway condition is the first element of the process
model in Fig. 3 that needs handling. In this case we add a
default condition and the appropriate variables to evaluate the
control flow path to follow. On the uper path connected to
the exclusive gateway exists a service task. We are linking
this task to a placeholder “dummy” RESTful web service or
a similar Java application. Similarly, on the lower path of the
exclusive gateway there is a script task that is linked to a
“dummy” (empty) script task. Finally, the process model in
Fig. 3 ends with a call activity. The call activity needs to be
linked to another external executable process in order to be
executed. For this purpose we have created the simple external
process as it is shown in Fig. 3.

As seen, our decision for the executable process model is to
implement all the external interactions with placeholder activi-
ties. Since our process models are generated for benchmarking
purposes we need to eliminate the introduced overhead of

Synthetic
Process Model

Generator
<<Java>>

BPMN 2.0
EMF

Meta Model
<<java>>

Camunda
V7.4.0

jBPM
V6.3.0

mySQL
v5.6.24

RPFs

Executable
BPMN 2.0

Drools
Engine
V5.2.0

<<Dependency>>

<<Message Flow>>

Fig. 4. Architecture of the Process Model Generator Components

the external interactions. This way we manage to isolate the
behavior of the Workflow Managament system to the maximum
possible extend and obtain clean measurements [14].

V. IMPLEMENTATION

In order to validate and evaluate the proposed approach
we implemented a proof-of-concept prototype that is available
in an open source model 3. A high level architecture of the
components of our prototype is shown in Fig. 4. The prototype
has been implemented with Java and is based on the BPMN 2.0
EMF metamodel 4. In addition, the implementation utilizes a
MySQL database (v5.6.24) for storing and quering the RPF
collection, and a Drools Engine (v5.2.0) for the creation of the
RPF structural meta data. The executable process models are
tested and validated for the Camunda v7.4.0 5 engine and the
jBPM v6.3.0 6 engine.

VI. EVALUATION

A. Use Case

For the qualitative evaluation of our approach we apply a use
case of medium complexity as shown in Fig. 3 (as discussed in
Section IV) and Fig. 5. More specifically, the RPFs shown in
Fig. 5a and Fig. 5b present the RPFs that were selected by the
methodology for the criteria that respond to these of Table I.
Namely, for the RPF shown in Fig. 5a we have chosen an
RPF with three service tasks, four script tasks, one exclusive
gateway, and two parallel gateways. The second RPF shown
in Fig. 5b contains two parallel gateways, three script tasks,
one call activity and one exclusive gateway.

In this use case, the RPF of Fig. 5a has four open outgoing
connections on the tasks: SE7, SE8, SC10, SC12 while the RPF
of Fig. 5b expects in total four open incoming connections,
two for each of the leftmost parallel gateways. In this case
the tasks SE7 and SE8 are connected with the upper parallel
gateway and the tasks SC10 and SC12 are connected with
the lower parallel gateway. In this way we derive a complete
BPMN 2.0 process as it was already shown in Fig. 3. The size
of the new synthetic process model is 18.

3https://git.io/v2qTG
4http://www.eclipse.org/modeling/mdt/?project=bpmn2
5https://camunda.org
6http://www.jbpm.org

synth1

SC9

SE6

SC10

SC11

SC12

SE7

SE8

(a)synth2

AB1

AB2

CA1

(b)

Fig. 5. Selected Relevant Process Fragments

TABLE I
SELECTION PARAMETERS

Script
Tasks

Service
Tasks

Call
Activities

Exclusive
Gateways

Parallel
Gateways

Criterion 1 4 3 0 1 2
Criterion 2 2 0 1 1 2

B. Performance Evaluation

1) Experimental Setup: As this is the first attempt to generate
representative and executable BPMN 2.0 process models from
a collection of fragments, the quantitative evaluation of our
approach could only target this prototype. For the quantitative
evaluation of the methodology we use the proof-of-concept
prototype discussed in the previous section. For measurement
purposes we have used a MacBook Pro with a 3,1 GHz Intel
Core i7 and 16 GB memory. On top of it we have set up
a Virtual Machine of 2GB memory that runs Ubuntu 64-bit
v14.04.3. The applications and frameworks utilized for the
prototype are the same as discussed in Section V.

For the setup of the experiments we have used a collection
of RPFs, which is derived from the collection of BPMN 2.0
real world process models described in Sec. II. The models
are compared through the algorithms described in previous
works [12] to detect recurring structures that have at least
5 nodes in common. This limit was set with respect to the
properties of our collection, as already discussed. The algorithm
discovered and extracted 27,637 RPFs with size ≥ 5, that were
persisted in the RPF database.

We defined three groups of experiments with different
numbers of criteria that target different sizes of synthetic
process models. The defined criteria are shown in detail in
Table II. Before proceeding further we manually queried the
RPF database with the above mentioned criteria in order to
determine the characteristics of the returned RPFs. By this
way we ensure that the defined criteria will result in a large
amount of RPF sets, and consequently, that our experiments
will stress the prototype performance throughout all the process
model generation phases. The main finding derived from our

TABLE II
EXPERIMENTS DETAILS

Experiment Criteria Targeted Total Sizes Criterio 1 Criterio 2 Criterio 3 Criterio 4

1 2 12, 16, 18, 20, 24, 28, 32 CallActivity: 3 CallActivity: 2
ExclusiveGateway: 1 - -

2 3 18, 20, 24, 28, 32 CallActivity: 3 CallActivity: 2
ExclusiveGateway: 1

CallActivity: 4
ParallelGateway: 2 -

3 4 24, 28, 32 CallActivity: 3 CallActivity: 2
ExclusiveGateway: 1

CallActivity: 4
ParallelGateway: 2

CallActivity: 2
ParallelGateway: 1
ExclusiveGateway: 1

Fig. 6. Time Evaluation of the Synthetic Process Model Generation Per Size

preliminary queries showed that our collection does not contain
any script or service tasks. This is justified by the fact that
our RPF collection is discovered by process models coming
from the same source, and the call activities are in principle
preferred for designing process models. On the contrary, there
were thousands of RPFs that contained call activities, exclusive
and parallel gateways. Hence, at the end we concluded in
criteria that target these three types of nodes.

The “Targeted Total Sizes” of our experiments, namely the
total number of nodes the generated process model will have is
defined with respect to the statistics obtained from our process
models collection (cf. Sec. I). Since we need at least two
RPFs for the synthesis, the sizes of a representative synthetic
model should be 10 ≤ size ≤ 32. However, for nodes with
size = 6 we observe a bigger concentration of process models
(cf. Fig. 1), thus we have decided to set the minimum synthesis
for size = 2× 6 = 12.

2) Experiments Results: Each experiment was executed 100
times; in each experirement we measured the total amount of
time needed for each one of the generation phases, as well as
the end-to-end time for the whole generation process. Fig. 6
shows how the size of the generated process models affects
time when considering the different criteria in Table II. As seen
Fig. 6 the average time for the process model generation is on
average 0.5 to 0.8 seconds. What can be observed is that the
experiments executed with 4 criteria have a smaller deviation
of the results, while the deviation grows proportionally for the
experiments of 3 and 2 criteria. Moreover, some outlier points

can be observed in Fig. 6. For example, the model generations
for the experiments of 2 criteria and for process models of sizes
18 and 20 lasted on average 0.35 and 0.45 seconds respectively.
In the first case (size 18) the RPFs of size 6 and 12 nodes
are selected from the database. For this query, the database
will return 2013 RPFs of 6 nodes and 49 RPF of size 12. As
the second set of RPF is small, and we are only requesting a
synthesis of 2 RPFs, the combinations can be checked faster,
and thus the needed time is smaller. Similarly, in the second
case (size 20) an RPF of 6 and an RPF of 14 nodes are selected
from the database. Again, in this case RPF size 6 will result
in 2013 RPFs while we could only find 1 RPF with 14 nodes
in the database. As only one RPF is selected for the second
criterion it is anticipated that this experiment would be even
faster than the first one. However, in this case the combination
of RPFs of 6 and 14 nodes is the second combination to be
checked for the generation. The combination for sizes 7 and 13
is the first one to be selected. In this case there are 251 RPFs
of size 7 and zero RPFs of size 13. As the size 13 did not
return any results, this combination was not further checked for
RPFs that can be linked. However, the selection of RPFs for
this combination introduces a time overhead. For this reason
this experiment lasts in average slightly more than the first
case.

Concerning the experiments that needed more time than
the average, we have again two outliers. The experiment of 2
criteria and size 12 needs 1.3 seconds to be completed, and the
experiment with 3 criteria and 18 nodes needs 1.2 seconds for
its completion. In the first case the sizes combination that leads
to the process model generation is of 2 RPFs of size 6, and this
is the second attempted size combination. As discussed before,
the size 6 will return 2013 RPFs from the database. The failure
of the first sizes combination, and the large amount of RPFs
returned by the second combination result in this experiment
being more time-consuming than the rest. The second outlier
succeeds in the generation of a process model already from
the first attempted size combination. However, the combination
that leads to a generated process model is of RPFs with sizes
5,6 and 7. The database has the biggest population for the sizes
5 and 6 and returns 1480, 2013, and 251 RPFs respectively.
The big amount of combinations that needed to be checked in
this case before finding the RPFs that can be synthesized costs
more time than the rest of the experiments.

In Fig. 7 we present the overall average time needed for
the experiments as well as the average times needed for each

Fig. 7. Time Evaluation of the Synthetic Process Model Generation Per Phase

phase of the process model generation. As observed from
Fig. 7 the overall average time drops while the total size of
the generated process model increases. In more detail, the
phases of “Compatibility & Generation” and “Executability”
are basically executed in constant time, independently from the
size of the generated process model, and lean towards 0. On
the contrary the “Selection” phase is the most time consuming
phase and affects heavily the overall time of the process model
generation process. The “Selection” phase contains the query
to the database in order to select the RPFs that satisfy the user
defined criteria. So, the observed times are basically the times
needed for the query execution.

It emerges from the results that the “Selection” phase affects
the overall time of the process model generation. However, the
data points that form the “Overall Time” chart differ slightly
from the “Selection” chart’s data points. This implies that there
are more factors affecting the process model generation and
they need to be further investigated.

3) Discussion: In general, it can be concluded that our eval-
uation shows realistic times for the generation of representative
models. In average, the generation time of a representative
process model is on average 0.5 seconds, while the slowest
experiment lasted 1.2 seconds. As shown by Fig. 7, the database
query is the main influential factor on the overall performance.
Thus an optimization of the query, or another choice of database
could lead to even better results. The phases of “Compatibility
& Generation” and “Executability” are constant and take times
that are almost zero. The database query is further influenced
by the content of the database. In the investigated use case,
the database contained more RPFs with lower sizes ([5− 8])

and less RPFs with bigger sizes ([9 − 15]). This leads into
querying less entries in the database for generating models of
bigger sizes, and thus gaining the results faster. Consequently,
the overall time drops while the size of the generated process
model increases.

Concerning the number of size combinations participating
in each experiment, in most of the cases the first or the second
size combination leads to the generation of a process model.
Generally, the failure of a size combination to provide RPFs that
can be synthesized introduced a small time overhead. Currently,
the size combinations to be attempted are chosen in a random
way. Although we do not have an extensive evaluation on the
impact of the chosen size combinations to the overall generation
times, our evaluation shows that the choice of the combination
can be optimized with respect to the content of the database.
So, for example, if we know that a database contains less RPFs
for bigger sizes, we should first attempt the size combinations
of bigger sizes. This way the time of the “Selection” phase
will drop and as a result the overall composition will be faster.
Further optimization is the goal of future work.

VII. RELATED WORK

The concept of using process fragments as reusable elements
to compose new process models is frequently discussed in
the literature [6], [10], [11], [17], [19]. Schumm et al. [10],
[11] introduce the concept of process fragments libraries that
enable the easier and faster development of process models.
We are utilizing this concept for storing and querying the
RPFs, which are an extended type of process fragments. The
above approach bases on the textual semantics of the stored

process fragments. Our approach focuses on the structural
characteristics of the RPFs. Eberle et al. [6] present a formal
model for process fragments and corresponding operations
for their composition. In this work, we adopt the suggested
methods for composing the process fragments into process
models, and we have extended the composition function in
order to stress the representativeness of the generated process
model.

Yan et al. [18] propose a complete method for generating
synthetic process models. The authors propose the usage
of refined process structure tree (RPST) [15] as a possible
improvement of their work. In previous work, we have argued
that RPST cannot be utilized for these purposes, and we have
therefore introduced the concept of PRFs [12]. Hence, this
work can be considered as an extension to the work of Yan et
al. [18].

To the best of our knowledge, this is the first effort to gen-
erate representative and executable BPMN 2.0 process models
with respect to structural characteristics. Graph synthesis can
be considered the most related area to our approach. Akoglu
et al. [1] propose an method to recursively generate realistic
graphs through a random typing graph generator. Bader and
Madduri [2] summarize three approaches of graph generators.
One of these approaches (SSCA#2 graph generator) aims to
produce graphs that are in turn used for benchmarking purposes.
Although the application field and method differs, this approach
has the same motivation goal as ours.

On the whole, the aforementioned works have different
application fields. Our work focuses on the synthetic graph
generation for BPMN 2.0 business process models. In addition
we support the serialization of the synthetic BPMN 2.0 process
model to its executable equivalent for different Workflow
Management Systems.

VIII. CONCLUSION AND FUTURE WORK

In this work, we introduced a method to automatically
generate synthetic BPMN 2.0 process models with respect to
their structural characteristics. The generated process models
are also automatically serialized to their executable equivalent
for different BPMN 2.0 Workflow Management Systems. The
method can be utilized for the creation of single process models,
or even collections of thousands of synthetic representative
process models. We implemented a proof-of-concept prototype
of our proposal, which we evaluated through a set of use cases
and experiments. The evaluation has shown that our method
runs in acceptable, realistic times, with our longer lasting
experiment reaching 1.2 seconds of execution. The overall
performance of the proposed method is heavily influenced
by the execution of the Selection phase, because querying
and selecting thousands of process models is in principle
more expensive than the in-memory computations of the other
phases. Our results also indicate that the overall process model
generation is influenced by the composition of the extracted
fragment metadata. As a general observation, the overall time
is inversely proportional to the number of RPFs that satisfy a
specific criterion.

In the future we plan to optimize the overall time needed
by further optimizations on the database, and to conduct
an evaluation of the impact of chosen size combinations to
the overall process model generation times. Concerning the
overall method we intend to extend it by making the models
more consistent by extending the method for a larger non-
anonymized collection to consider also the textual semantics of
the process models; by simulating probabilistic executions and
imitating representative behaviors and by including only the
most frequently occurring RPFs in the generation process [13].

ACKNOWLEDGEMENTS

The authors would like to thank A. Wahab for the contribu-
tion to the prototypical implementation. This work is funded
by the project DACH Grant Nr. 200021E-145062/1.

REFERENCES

[1] L. Akoglu and C. Faloutsos. Proc. ECML PKDD’09, Part I, chapter
RTG: A Recursive Realistic Graph Generator Using Random Typing,
pages 13–28. Springer Berlin Heidelberg, 2009.

[2] D. A. Bader and K. Madduri. Gtgraph: A synthetic graph generator
suite, 2006.

[3] J. Cardoso. Business process control-flow complexity: Metric, evaluation,
and validation. IJWSR, 5(2):49–76, 2008.

[4] R. Dijkman, M. la Rosa, and H. A. Reijers. Editorial: Managing large
collections of business process models-current techniques and challenges.
Comput. Ind., 63(2):91–97, Feb. 2012.

[5] M. Dumas, L. Garcı́a-Bañuelos, and R. M. Dijkman. Similarity search
of business process models. IEEE Data Eng. Bull., 32(3):23–28, 2009.

[6] H. Eberle, F. Leymann, et al. Process fragment composition operations.
In Proc. APSCC’ 2010, pages 157–163, Dec 2010.

[7] D. G. Feitelson. Workload modeling for computer systems performance
evaluation. Cambridge University Press, 2015.

[8] V. Ferme, A. Ivanchikj, et al. A container-centric methodology for
benchmarking workflow management systems. In Proc. CLOSER ’16.
SciTePress, April 2016. to appear.

[9] D. Jordan and J. Evdemon. Business Process Model And Notation
(BPMN) Version 2.0. Object Management Group, Inc, January 2011.
http://www.omg.org/spec/BPMN/2.0/.

[10] D. Schumm, D. Karastoyanova, et al. Process fragment libraries for
easier and faster development of process-based applications. Journal of
Systems Integration, 2(1):39–55, 2011.

[11] D. Schumm, F. Leymann, et al. Integrating compliance into business
processes: Process fragments as reusable compliance controls. In Proc.
MKWI ’10. Universitätsverlag Göttingen, 2010.

[12] M. Skouradaki, Görlach, et al. In Proc. SOSE ’15, San Francisco Bay,
CA, USA, March 30 – April 3 2015. IEEE Computer Society.

[13] M. Skouradaki and F. Leymann. Detecting frequently recurring structures
in bpmn 2.0 process models. In Proc. SummerSOC’15, pages 102–116.
IBM, 2015.

[14] M. Skouradaki, D. H. Roller, et al. On the road to benchmarking BPMN
2.0 workflow engines. In Proc. ICPE ’15, pages 301–304, 2015.

[15] J. Vanhatalo, H. Völzer, and J. Koehler. The refined process structure
tree. In Proceedings of the 6th International Conference on Business
Process Management, BPM ’08, pages 100–115, Berlin, Heidelberg,
2008. Springer-Verlag.

[16] J. von Kistowski, J. A. Arnold, et al. How to build a benchmark. In
L. K. John, C. U. Smith, K. Sachs, and C. M. Lladó, editors, Proc. ICPE

’15, pages 333–336. ACM, January 2015.
[17] A. Weiß, V. Andrikopoulos, et al. Enabling the Extraction and Insertion

of Reusable Choreography Fragments. In Proc. ICWS ’15, pages 686–694.
IEEE Computer Society, June 2015.

[18] Z. Yan, R. Dijkman, and P. Grefen. Generating process model collections.
Software & Systems Modeling, pages 1–17, 2015.

[19] R. Yang, B. Li, et al. Scky: A method for reusing service process
fragments. In Proc. ICWS ’14, pages 209–216. IEEE Computer Society,
June 2014.

	cover-IEEE
	INPROC-2016-23-Representative BPMN 2.0 Process Model Generation from Recurring Structures

